In 1890, Poincare determined that trajectories of three-body systems are commonly non-periodic, i.e. not repeating. This can explain why it is so hard to obtain the periodic orbits of three-body systems. In the 300 years since the three-body problem was first recognized, only three families of periodic orbits had been found. In 2013, Suvakov and Dmitrasinovic [Phys. Rev. Lett. 110, 114301 (2013)] made a breakthrough, finding 13 new distinct periodic orbits belonging to 11 new families of the Newtonian planar three-body problem with equal mass and zero angular momentum.
Now, two scientists, XiaoMing Li and ShiJun Liao at Shanghai Jiaotong University, China, have successfully determined 695 families of periodic orbits of the same Newtonian planar three-body system using the TH-2 supercomputer at Guangzhou, China. Their results have been published in SCIENCE CHINA-Physics Mechanics & Astronomy...
These 695 periodic orbits include the well-known figure-eight family found by Moore in 1993, the 11 families found by Suvakov and Dmitrasinovic in 2013, and more than 600 new families reported for the first time.
Sunday, October 15, 2017
Three-Body Orbit Solutions
"Scientists discover more than 600 new periodic orbits of the famous three-body problem":