Friday, November 13, 2015

Ramanujan Surprises Again

"Ramanujan surprises again". Some just-discovered depth to the famous "1729" story:
The romanticism rubbed off on the number 1729, which plays a central role in the Hardy-Ramanujan story. "I remember once going to see [Ramanujan] when he was ill at Putney," Hardy wrote later. "I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavourable omen. 'No', he replied, 'it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways.'" What Ramanujan meant is that
  \[ 1729 = 1^3 + 12^3 = 9^3 + 10^3. \]    

The anecdote gained the number 1729 fame in mathematical circles, but until recently people believed its curious property was just another random fact Ramanujan carried about in his brain — much like a train spotter remembers train arrival times. What Ono and Trebat-Leder's discovery shows, however, is that it was just the tip of an ice berg. In reality Ramanujan had been busy developing a theory that was several decades ahead of its time and yields results that are interesting to mathematicians even today. He just didn't live long enough to publish it...